Molecular determinants for the distinct pH sensitivity of Kir1.1 and Kir4.1 channels.

نویسندگان

  • H Xu
  • Z Yang
  • N Cui
  • L R Giwa
  • L Abdulkadir
  • M Patel
  • P Sharma
  • G Shan
  • W Shen
  • C Jiang
چکیده

Kir1.1 (ROMK1) is inhibited by hypercapnia and intracellular acidosis with midpoint pH for channel inhibition (pK(a)) of approximately 6.7. Another close relative, Kir4.1 (BIR10), is also pH sensitive with much lower pH sensitivity (pK(a) approximately 6. 0), although it shares a high sequence homology with Kir1.1. To find the molecular determinants for the distinct pH sensitivity, we studied the structure-functional relationship using site-directed mutagenesis. An NH(2)-terminal residue (Lys-53) was found to be responsible for the low pH sensitivity in Kir4.1. Mutation of this lysine to valine (K53V), a residue seen at the same position in Kir1. 1, markedly increased channel sensitivity to CO(2)/pH. Reverse mutation on Kir1.1 (V66K) decreased the CO(2)/pH sensitivities. Interestingly, mutation of these residues to glutamate greatly enhanced the pH sensitivity in both channels. Other contributors to the distinct pH sensitivity were histidine residues in the COOH terminus, whose numbers are fewer in Kir4.1 than Kir1.1. Mutation of two of these histidine residues in Kir1.1 (H342Q/H354N) reduced CO(2)/pH sensitivities, whereas the creation of two histidines (S328H/G340H) in Kir4.1 increased the CO(2)/pH sensitivities. Combined mutations of the lysine and histidine residues in Kir4.1 (K53V/S328H/G340H) gave rise to a channel that had CO(2)/pH sensitivities almost identical to those of the wild-type Kir1.1. Thus the residues demonstrated in our current studies are likely the molecular basis for the distinct pH sensitivity between Kir1.1 and Kir4.1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of inwardly rectifying K+ channels in the carotid body of rat.

The inwardly rectifying K+ channels, Kir1.1, Kir2.3, Kir4.1-Kir5.1, and Kir4.2-Kir5.1, are candidate chemosensory molecules for CO2/H+. Here, we determined the mRNA expression and immunohistochemical localization of these channels in the carotid body (CB) and petrosal ganglion (PG) of the rat. RT-PCR analysis revealed mRNA expression of Kir4.1 and Kir5.1 in CB, and Kir1.1, Kir4.1, and Kir5.1 in...

متن کامل

Biophysical and Molecular Mechanisms Underlying the Modulation of Heteromeric Kir4.1–Kir5.1 Channels by Co2 and Ph

CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO2 and pH. To understand the bioph...

متن کامل

Inhibition of astroglial Kir4.1 channels by selective serotonin reuptake inhibitors.

The inwardly rectifying K+ (Kir) channel Kir4.1 is responsible for astroglial K+ buffering. We recently found that tricyclic antidepressants (TCAs) inhibit Kir4.1 channel currents, which suggests that astroglial Kir currents might be involved in the pharmacological action of antidepressants. We therefore further examined the effects of the currently most popular antidepressants, selective serot...

متن کامل

Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1.

1. The inwardly rectifying potassium channel Kir5.1 appears to form functional channels only by coexpression with either Kir4.1 or Kir4.2. Kir4.1-Kir5.1 heteromeric channels have been shown to exist in vivo in renal tubular epithelia. However, Kir5.1 is expressed in many other tissues where Kir4.1 is not found. Using Kir5.1-specific antibodies we have localised Kir5.1 expression in the pancreas...

متن کامل

Control of pH and PIP2 gating in heteromeric Kir4.1/Kir5.1 channels by H-Bonding at the helix-bundle crossing.

Inhibition by intracellular H(+) (pH gating) and activation by phosphoinositides such as PIP(2) (PIP(2)-gating) are key regulatory mechanisms in the physiology of inwardly-rectifying potassium (Kir) channels. Our recent findings suggest that PIP(2) gating and pH gating are controlled by an intra-subunit H-bond at the helix-bundle crossing between a lysine in TM1 and a backbone carbonyl group in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 279 5  شماره 

صفحات  -

تاریخ انتشار 2000